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Abstract
For systems described by univariate birth–death or chemical master equations
driven out of equilibrium by externally controlled time-dependent transition
rates, a nonlinear fluctuation theorem is derived. For paradigmatic chemical
reactions, this theorem acquires a particularly transparent form.

PACS number: 05.40.−a

In a major development in non-equilibrium statistical mechanics, fluctuation theorems have
been derived which restrict the possible fluctuations of driven systems beyond the validity of
linear-response regimes. First observed in computer simulations of sheared liquids [1], they
have later been derived for chaotic and contracting deterministic dynamics [2, 3] as well as for
driven diffusive systems [4, 5] and, most recently, for chemical non-equilibrium reactions [6].
Basically these theorems relate the probability of observing a certain entropy production rate
to the probability of observing the corresponding entropy ‘consumption’ rate. They typically
apply to stationary non-equilibrium states driven by imposing fluxes through time-independent
boundary conditions.

A related but somewhat different approach has been applied to systems driven out of
equilibrium by external time-dependent forces or potentials. Jarzynski’s relation [7, 8],

〈e−βWd〉 = 1, (1)

constrains a nonlinear average of the dissipated work Wd spent while driving a system from
state 1 to state 2 in a surrounding heat bath of inverse temperature β. This relation has found
wide-spread applications inter alia in the analysis of mechanical single molecule experiments;
for a review, see [9]. Both developments ultimately arise from the behaviour of non-equilibrium
systems under time reversal; for a coherent presentation, see [10].

The purpose of this letter is to derive and discuss the fluctuation theorem for master
equations with transition rates that become time dependent through an external control
parameter λ(t). If for time-independent rates, i.e. fixed λ, detailed balance is fulfilled, we can
derive a fluctuation theorem which restricts nonlinearly the possible fluctuations of the system
driven by a time-dependent λ(t). While the mere existence of such a relation can be expected
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in analogy to the above cases, its general form derived below, in fact, becomes particularly
transparent for simple chemical master equations.

We consider the master equation [11]

∂tp(n) = w+(n − 1, λ)p(n − 1) + w−(n + 1, λ)p(n + 1) − [w+(n, λ) + w−(n, λ)]p(n) (2)

for the probability p(n, t) to be in state n at time t where only jumps to neighbouring states
are allowed. We assume that the rates w±(n, λ) depend on an external parameter λ later to
be controlled according to some protocol λ(t). For ease of notation, we will not make the
λ-dependence explicit everywhere. In typical applications of birth–death processes or chemical
reactions, the phase space is constrained to n � 0. This constraint implies that, for fixed λ,
the stationary state ps(n) necessarily obeys a detailed balance condition

ps(n)/ps(n − 1) = w+(n − 1)/w−(n), (3)

from which one derives easily

ps(n) = ps(0)

n∏
m=1

w+(m − 1)/w−(m), (4)

where ps(0) is determined by the normalization
∑

n=0 ps(n) = 1. It will be convenient to
define ‘energy levels’ by

εn(λ) ≡ −ln ps(n, λ). (5)

Derivatives with respect to λ will be denoted by a prime such as in ε′
n(λ) ≡ dεn(λ)/dλ .

The fluctuation theorem now applies to stochastic trajectories n(τ) obtained by starting
the system at time t = 0 in the stationary state with λ(0) and driving it according to some
protocol λ(τ) with 0 � τ � t from λ(0) to λ(t). Below we will prove that these trajectories
obey the fluctuation theorem〈

exp

[
−

∫ t

0
ε′
n(τ)λ̇(τ ) dτ

]〉
= 1, (6)

where the average 〈· · ·〉 is over many realizations of this protocol and λ̇ ≡ dλ/dt .
This general relation becomes more transparent for processes for which the stationary

state is a Poissonian distribution

ps(n) = e−ns

(ns)n/n! (7)

with mean ns(λ). With the energy εn = ns −n ln ns +ln n!, the fluctuation theorem (6) acquires
the appealing form〈

exp
∫ t

0
δn(τ)

ns′(λ)

ns(λ)
λ̇(τ ) dτ

〉
= 1 (8)

for the fluctuating deviation

δn(τ) ≡ n(τ) − ns(λ(τ)) (9)

from the stationary mean ns(λ(τ)). Here, ns ′ ≡ dns/dλ. Note that this fluctuation theorem (as
the more general one (6)) holds for arbitrarily fast driving beyond any kind of linear-response
regime. In general, one expects ns ′(λ(τ ))λ̇ and δn to have different signs since, e.g., changing
the rates such that ns(λ(τ)) increases will typically lead to n(τ) lagging behind ns(λ(τ)). The
fluctuation theorem shows that there will be realizations for which at least along some parts
of the trajectory the fluctuation are ‘ahead’ of the change of the stationary mean.

A Poissonian distribution is obtained for rates that obey

w+(n − 1, λ)/w−(n, λ) = ns(λ)/n (10)
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with some ns(λ). The simplest example is given by the chemical reaction

A
k1�
k2

X (11)

with the rates w+(n) = k1nA and w−(n) = k2n. Here, n denotes the number of X molecules
and the mean is ns ≡ k1nA/k2. We assume that the number nA of A molecules is constant. An
example which allows for a genuine non-equilibrium stationary state is given by the scheme

A
k1�
k2

X
k3�
k4

B (12)

with numbers nA, nB fixed. The rates are w+(n − 1) = k1nA + k4nB and w−(n) = (k2 + k3)n.

The stationary state is again a Poissonian with ns = (k1nA + k4nB)/(k2 + k3). Note that full
chemical equilibrium, however, is obtained only for k1nA/k2 = k4nB/k3 ≡ neq. If in these two
examples any of the rates k1,2(,3,4) and/or the numbers nA(,B) depend on the external control
parameter λ(t), the fluctuation theorem (8) restricts the possible trajectories n(τ).

Characteristic for the fluctuation theorem in the Poissonian case is the linear appearance
of δn in the exponent. Such a linear expression also holds more generally for all stationary
distributions of the form

ps(n) = c(q)qnf (n) (13)

as long as they derive from a detailed balance condition. The stationary mean value becomes

ns =
∑

n

nps(n) = −(q/c(q))∂c/∂q. (14)

Using this expression in (6) and the definition (9), the fluctuation theorem becomes〈
exp

∫ t

0
δn(τ)

q ′(λ)

q(λ)
λ̇(τ ) dτ

〉
= 1. (15)

As an example for this case, consider the isomerization

Y
k1�
k2

X with nY = N − n, (16)

where n is the number of X molecules, and N is the total number of molecules. This scheme is
similar to (11) above with an additional conservation law. The rates w+(n) = k1(N − n) and
w−(n) = k2n no longer fulfil (10). The stationary distribution becomes a binominal one with

ps(n) = (1 + q)−Nqn

(
N

n

)
(17)

where q ≡ k1/k2 and the mean ns = qN/(1 +q). If one (or both) of the rates k1,2 are changed
externally, the fluctuations will obey the theorem (15) with q(λ) ≡ k1(λ)/k2(λ).

For the proof of the general form (6) of the theorem, we consider the more general master
equation

∂tp(n) =
∑
m

w(m, n)p(m) − w(n,m)p(n) (18)

for the time-dependent probability p(n, t) with transition rates w(m, n, λ). We assume that
for fixed λ the system is in a stationary state ps(n) obeying detailed balance

ps(n)/ps(m) = w(m, n)/w(n,m). (19)

The proof now resembles Lebowitz and Spohn [5], Crooks [8] and Maes [10] adapted to our
system. The probability prob[n(τ)] for a trajectory n(τ) = (n0, n1, . . . , nk) which starts in
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state n0, jumps at time τ1 to state n1, jumps at time τ2 to state n2, . . . , finally jumps at time τk

to nk where it stays till time t, is given by

prob[n(τ), λ(τ )] = ps(n0, λ(0)) × exp


−

∫ τ1

0

∑
m�=n0

w(n0,m, λ(τ)) dτ


 × w(n0, n1, λ(τ1))

× exp


−

∫ τ2

τ1

∑
m�=n1

w(n1,m, λ(τ)) dτ


 w(n1, n2, λ(τ2)) × · · ·

× exp


−

∫ t

τk

∑
m�=nk

w(nk,m, λ(τ)) dτ


 . (20)

The probability for the reversed trajectory ñ(τ ) ≡ n(t−τ) to occur under the reversed protocol
λ̃(τ ) ≡ λ(t − τ) is

prob[ñ(τ ), λ̃(τ )] = ps(ñ0, λ̃(0)) × exp


−

∫ τ1

0

∑
m�=ñ0

w(ñ0,m, λ̃(τ )) dτ


 × w(ñ0, ñ1, λ̃(τ1))

× exp


−

∫ τ2

τ1

∑
m�=ñ1

w(ñ1,m, λ̃(τ )) dτ


 w(ñ1, ñ2, λ̃(τ2)) × · · ·

× exp


−

∫ t

τk

∑
m�=ñk

w(ñk,m, λ̃(τ )) dτ


 . (21)

The crucial quantity is the ratio

e−R[n(τ)] ≡ prob[ñ(τ ), λ̃(τ )]

prob[n(τ), λ(τ )]
= exp

[
−

∫ t

0
dτ ε′

n(τ)λ̇(τ )

]
, (22)

where the last equality follows by using (19) and (5) and the cancellation of the exponential
integral terms. The proof of the fluctuation theorem now follows almost trivially from the
following line of identities:

1 =
∑
ñ(τ )

prob[ñ(τ ), λ̃(τ )] =
∑
ñ(τ )

e−R[n(τ)] prob[n(τ), λ(τ )] (23)

1 =
∑
n(τ)

e−R[n(τ)] prob[n(τ), λ(τ )] =
〈
exp

[
−

∫ t

0
dτ ε′

n(τ)λ̇(τ )

]〉
. (24)

It is instructive to point out explicitly the relation of the present fluctuation theorem to
Jarzynski’s [7] which is easily done in the context of diffusive motion. For a particle moving
diffusively along a continuous coordinate x(τ) in a potential V (x, λ) that depends on an
external control parameter λ(τ), the stationary distribution for fixed λ is given by

ps(x, λ) = exp[−βV (x, λ)]/Z(λ) (25)

with the partition function Z(λ) ≡ ∫ +∞
−∞ exp[−βV (x, λ)] dx. Substituting the correspondence

n(τ) ∼ x(τ) and

ε(n, λ) ≡ −ln ps(n, λ) ∼ −ln ps(x, λ) = βV (x, λ) + ln Z(λ) (26)
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into (6) leads to〈
exp

[
−β

∫ t

0
V ′[x(τ), λ(τ )]λ̇(τ ) dτ

]
Z(λ(0))

Z(λ(t))

〉
= 1. (27)

With the definitions of the free energy F(λ) ≡ −(1/β) ln Z(λ), the applied work W ≡∫ t

0 dτV ′[x(τ), λ(τ )]λ̇(τ ), and the dissipated work Wd ≡ W − [F(λ(t)) − F(λ(0))], one
recovers Jarzynski’s relation in the form (1). This observation shows that the present fluctuation
theorem is akin to Jarzynski’s relation. In our case, the ‘boundary term’ Z(λ(0))/Z(λ(t)) is
1 since definition (5) implies a ‘partition function’ identically equal to 1.

In summary, we have derived a fluctuation theorem for processes described by master
equations with time-dependent rates if the stationary state for fixed rates obeys detailed balance.
For a uni-variate birth–death process with one step increments the latter holds always true. If
the stationary state is Poissonian or binominal the fluctuation theorem acquires an intriguing
simple form. It would be highly desirable to verify the theorem in experiments by using one of
the simple chemical reaction schemes discussed in this letter. Likewise, it will be interesting to
see for which multivariate (chemical) master equations the general form (6) (which is always
true given the detailed balance condition) can be reduced to more transparent expressions such
as (8) or (15) derived here for particular classes of rates.
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